Central Limit Theorem for dimension of Gibbs measures for skew expanding maps

نویسنده

  • Renaud Leplaideur
چکیده

We consider a class of non-conformal expanding maps on the d-dimensional torus. For an equilibrium measure of an Hölder potential, we prove an analogue of the Central Limit Theorem for the fluctuations of the logarithm of the measure of balls as the radius goes to zero. An unexpected consequence is that when the measure is not absolutely continuous, then half of the balls of radius ε have a measure smaller than εδ and half of them have a measure larger than εδ, where δ is the Hausdorff dimension of the measure. We first show that the problem is equivalent to the study of the fluctuations of some Birkhoff sums. Then we use general results from probability theory as the weak invariance principle and random change of time to get our main theorem. Our method also applies to conformal repellers and Axiom A surface diffeomorphisms and possibly to a class of one-dimensional non uniformly expanding maps. These generalizations are presented at the end of the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Equilibrium States and Dimensions of Fiberwise Invariant Measures for Distance Expanding Random Maps

We show that the Gibbs states (known from [9] to be unique) of Hölder continuous potentials and random distance expanding maps coincide with relative equilibrium states of those potentials, proving in particular that the latter exist and are unique. In the realm of conformal expanding random maps we prove that given an ergodic (globally) invariant measure with a given marginal, for almost every...

متن کامل

Markov Structures and Decay of Correlations for Non-uniformly Expanding Dynamical Systems

We consider non-uniformly expanding maps on compact Riemannian manifolds of arbitrary dimension, possibly having discontinuities and/or critical sets, and show that under some general conditions they admit an induced Markov tower structure for which the decay of the return time function can be controlled in terms of the time generic points need to achieve some uniform expanding behavior. As a c...

متن کامل

Large Deviations Bounds for Non-uniformly Hyperbolic Maps and Weak Gibbs Measures

We establish bounds for the measure of deviation sets associated to continuous observables with respect to weak Gibbs measures. Under some mild assumptions, we obtain upper and lower bounds for the measure of deviation sets of some non-uniformly expanding maps, including quadratic maps and robust multidimensional non-uniformly expanding local diffeomorphisms.

متن کامل

A central limit theorem for Gibbs measures relative to Brownian motion

We study a Gibbs measure over Brownian motion with a pair potential which depends only on the increments. Assuming a particular form of this pair potential, we establish that in the infinite volume limit the Gibbs measure can be viewed as Brownian motion moving in a dynamic random environment. Thereby we are in a position to use the technique of Kipnis and Varadhan and to prove a functional cen...

متن کامل

Transversal Families of Skew-product Axiom a Endomorphisms

We study families of Axiom A skew products with the transversality condition and in particular, the Hausdorff dimension of their fibers, by using thermodynamical formalism. The maps we consider can be non-invertible, and the study of their dynamics is influenced greatly by this fact. We introduce and employ probability measures (constructed from equilibrium measures on the natural extension), w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009